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Common fallacies in the derivation of Boltzmann’s equation 
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Sweden 

Received 5 April 1973, in final form 8 June 1973 

Abstract. The failure to  distinguish between valid proofs and false or inconclusive assertions 
in standard presentations of Boltzmann’s equation is noted. For example, it is false to assert 
that Idyl = Idy’l, wheredy is the solid-angle element ofthe scattering direction, and impossible 
to define an impact azimuth B so that Idcl = Idc‘l. 

When tested by logic, the srandard derivations of Boltzmann’s collision term in most 
modern textbooks are seen to be false or at least inconclusive. On the other hand, the 
proofs given in the early texts are quite satisfactory (eg Boltzmann 1910,1912, Jeans 1921, 
Kennard 1938, Chapman and Cowling 1939). If the fallacies become widely known, 
we may hope that future students will again be offered presentations that are not in 
principle incomprehensible. A full account of some common malpractices and suggested 
remedies is available elsewhere (Dahlberg 1972); the aim of the present note is to create a 
reasonable doubt in the minds of scientists who are already familiar with the Boltzmann 
equation. Our hope is that this may help to reduce further spreading of the prevalent 
acceptance of such pseudo-proofs in kinetic theory. 

I t  is sufficient for our purpose to consider the so called heuristic derivation for 
classical, elastic, short-range encounters between spherically symmetric particles of a 
single species. We shall use a reference frame with fixed axis directions for specifying 
particle velocities ; further we shall employ primes to denote the post-collision (final) 
counterpart of an unprimed pre-collision (initial) quantity. Thus c 1  and c ;  denote the 
initial and final velocities ofparticle 1 and analogously c2 and c; for particle 2. A collision 
is completely specified by eight scalar quantities, eg (c1,  c, ,  y’) or (c; , E ; ,  y), where 

are unit vectors representing the direction of the respective relative velocities. 

(c1,  c 2 ,  y’) to (c; , c; ,  y) has a unit jacobian, ie 
To obtain the collision term it is necessary to establish that the transformation from 

(3) 

This result follows from the laws of mechanics; however, for many modern authors it 
seems to have been a stumbling block. In this connection we should note Boltzmann’s 
strong warning (Boltzmann 1912,§ 27) that an equation like (3) “has no meaning whatso- 
ever except when (hat iiberhaupt nur eine Bedeutung, wenn) it refers to” a change of 
variables in a definite integral over all the variables c1 ,  c,, y‘. 

Idc, dc, dy’l = Jdc; de; dyl. 

1800 
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The most common error is to base equation (3) on two separate assertions : 

Idcl dc,l = Idc; dc;l (4) 

which are both obviously false. If relations like these were possible we should be able to 
transform an integral 

JJJ f dc, dcz dy‘ 

JJ dc, dc, J f dy 

either at constant (c1, c,) into 

which is clearly impossible since y is completely determined by (cl ,  c,) (cf equation (2)); 
or at constant y‘ into 

which is equally impossible since (c; , c;) are not sufficient to specify (c1, c,) for a given y’. 
Some authors prefer to specify the collision using the ‘impact parameter’ 6 and some 

-usually not well defined-impact azimuth E presumably measured in a frame deter- 
mined by the initial relative velocity. Although it is true that the impact parameter is the 
same for a collision and its so called inverse, it is easy to show that no definition of E can 
exist for which Id€( = [de’(. Here E‘ denotes the impact aximuth of the inverse collision. 
To see this we need only consider a transition from (nearly) glancing collisions for which 
one must have de 1: +de’ to (nearly) head-on collisions for which clearly de = - de‘. 

Yet another group of authors use a different and deceptively simple argument. They 
first consider the nine-dimensional transformation from (c1, c2 ,g’) to (c; , c;, g), where 
g = gy = c2 - c 1  is the relative velocity. Here it is easily established that 

(6) 

(7) 

Thus, it is concluded that equation (3) must follow. Presumably, the authors-and 
certainly most readers-see nothing more in this than a simple cancellation. However, a 
full justification (see appendix) requires lengthy mathematics and depends on the 
special properties of the transformation from (c1, c2 ,g’) to ( E ; ,  c; ,g). Since this would 
presumably require more space and give less physical insight than a correct and more 
traditional proof, we see no reason for employing this technique in the presentation of the 
Boltzmann equation. 

It may now seem natural to wonder why the above-described pseudo-proofs have 
come to prevail over the correct approach employed originally. In that approach the 
particles were mostly thought of as hard spheres or ‘billiard balls’ and the line of impact 
or apse-line direction a’ was a natural choice for completing the collision specification. 
There was then no obvious need to stress the additional and special advantage of this 
parameter, namely, that it is conserved (or rather exactly reversed) when we go from a 

Idcl dc, dy’(g’)’ dg’l = Idc; dc; dyg2 dgl 

(g’), dg’ = gz dg. 

and, further, conservation of energy implies g’ = g or 
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collision to its inverse, ie 

This special property can be used to show that 

where the subscript c i  is meant as an-important but usually omitted-indication that 
the relation (9) refers to a transformation at constant apse-line direction. One may now 
conjecture that the originator(s) of false assertions like equations (4) and (5) held the 
scattering direction to be a more ‘physical’ parameter than the ‘line of impact’. It may 
then have been tempting to take it for granted that, whatever specifying parameter be 
used, relations analogous to equations (8) and (9) should obtain. The fact that later 
authors have so often chosen to accept and employ the false assertions is understandable 
but scientifically regrettable. 

In derivations of the left member of Boltzmann’s equation there sometimes occurs a 
related obscurity. Such derivations are commonly made by considering-in the absence 
of collisions-the change ( in a time &) in the number of particles either in a fixed phase- 
space element dc, dr, or in an element following the phase-space motion from c,, Y, to 
c,, r,. Since it is in fact necessary to impose restrictions on the velocity dependence of the 
forces, the necessity-and not a mere statement-f such restrictions must be manifest 
in the argument if the derivation shall be convincing. This is not the case if it is simply 
taken as obvious that 

dc, dr, = dc, duo (10) 

because it is in proving this that the need for restrictions comes in. Even less recommend- 
able does it seem to base the argument on a statement that dc, = dc, and dr, = dr, as 
two separate assertions. Since c, = c,(co, Y,) and r, = Y,(c,, r,), it is not even well defined 
what such a statement should mean. Clearly, it cannot be given the simple interpretation 
-analogous to equation (9) above-that 

Although equations (1 1) can be shown to be true, they are not sufficient for deriving 
equation (10) as can be seen from the simple counter example 

c, = c, + r ,  

r, = - c , + r ,  (12) 

for which equations (1 1) would obtain but which yields dc, dr, = 8 dc, dr, . 
In conclusion, it may also be worth noting that-although this is seldom emphasized 

-Boltzmann’s equation and its derivation must be modified if the velocities are referred 
to position-dependent axis directions, eg c = t . , P + v z 8 + u , ~  or c = w , ~ + w z ~ + w , 2  
using spherical or cylindrical coordinates, as might seem natural for some problem 
geometries. (Alternatively, one could of course employ the corresponding generalized 
momenta.) Putting f ( t ,  r, c)  = fsph(t, r, U) = f,,,(t, r ,  w )  to define the distribution func- 
tion as a function of time, space and the respective velocity components, it is easily seen 
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that the collision term is not affected and that we still have 

du, dr, = duo dr, 

dw, dv, = dw, dr, 
(13) 

(14) 

although, of course, relations analogous to (11) no longer obtain. The expression for 
the substantial derivative, Df/Dt, ie the left member of Boltzmann's equation, will 
however be formally different. For the examples above we thus find (on dropping 
the subscripts sph and cy1 and extending the conventional notation, so that eg 
C . (af/au), = X Gi(afsphjavi)v,ckr etc) 

where 
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Appendix. On the handling of jacobians 

First, let us recall a well known and often used fact. Consider the transformation A : 

x = AU 

where x denotes an n-vector etc, and its jacobian 

ax/au = J , ~  

and assume that A equals its own inverse, 

A = A-' .  ('4.2) 

aulax J ( ~  - ,,(I) = J , JX) .  (A.3) 

a x p  = i/(au/ax). (A.4) 

Then the jacobian of the inverse must also be the same function 

Further, one has quite generally 

Before drawing any conclusions we should note that equations (A.3) and (A.4) are 
relations of two different kinds, and that a statement that the two jacobians are equal may 
be misleading. Equation (A.3) indicates the equality of two functions, or 

(ax/au)l,=, = (au/ax)l,=,, V a  (A.3a) 
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whereas equation (A.4) represents the equality of the values of two functions for corres- 
ponding arguments 

(WWI,=, = I M W W }  l x = A u = A . .  (A.4a) 

However, for the important special case that A is a linear transformation, so that 
dx/du = c = constant, equation (A.3a) would be valid also for corresponding argu- 
ments, and we then obtain 

(!?)2 = 
= 2 = 1, if A = A -  and linear. 

The importance of the linearity of A should be obvious, the omission of any mention 
thereof is, however, quite common in similar arguments in the literature. 

Second, consider the transformation 

with the inverse 

Assume also that what we are really interested in is the restriction of B to some hyper- 
surface, which may be given by 

Y = f (4. (‘4.8) 

x = cu, U = c-’x.  (‘4.9) 

Introducing the symbol C for the restricted transformation, we have 

(The transformations B and C could, for instance, represent relations between pre- and 
post-collision variables for a binary encounter together with necessary specifiers, and 
the restriction (A.8) could correspond to a prescribed energy loss.) I t  may now happen 
that a determination of the jacobian, J ,  = d(x, y)/d(u, U), appears to be much simpler 
than a direct calculation of the jacobian J, 

(A.lO) 

(A. 1 1) 

We may now ask whether one can make a ‘cancellation’ here, or if there are some non- 
trivial conditions that must be imposed before we can draw the conclusion from (A.lO) 
and (A . l l )  that 

dx = IJB/f’l du (?) (A.12) 

We recall here Boltzmann’s warning, referred to in the text; we may also note the 
commendable practice of Whittaker and Watson (1927) who write (dx dy) instead of 
dx dy as an indication that the multidimensional differential element cannot always be 
thought of as a simple product of differentials. 

dx/du of (A.9). Thus we have 

dx dy z dx, dx2 . . . dx, dy = IJ,I du dv 

dy = f’ dv. 

Let us first consider a two-dimensional example : 

(A.13) 
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with the restriction 

Y = f (4. 
Thus, we shall carry out a change of variables in the integral 

I ,  = s, F(x, Y )  dx 

where y, of course, is to be determined by 

(A.14) 

(A.15) 

Y = f ( & ,  Y) ) .  (A.14a) 

(We shall tacitly assume that everything is sufficiently well behaved so that we need not 
discuss any exceptional cases.) The restriction (A.14) is also seen to imply 

Y(u, V ) - f ( U )  = 0 (A.14b) 

so that 

xdu+(Y,-f’)dv = 0 

where x (aY/au), etc. Consequently 

dx dv x,r, - (X,Y,-X,Y,-X,f’) 
- = xu+xu- = xu-- - 
du du K - f  K-f‘ 

JB-Xuf’ - J B  ( I - f ’ X d J , )  -- - J ,  (1-<f‘) - -- - - - 
K - f ’  f ’  ( l -K/ f ‘ )  f ’  U-K/ f ’ )  

where the last equality follows from the well known inversion formula 

Thus, instead of (12), we obtain 

or more explicitly 

(A.16) 

(A.17) 

(A.17a) 

We see that the simple cancellation leading to equation (A.12) will produce a correct 
result only under very special conditions. 

Next we should try to find an n-dimensional counterpart of the one-dimensional 
formulae (A.16HA.17a). To do this for the transformations (A.6HA.9), we shall consider 
the following integral : 

I = 1. s, F 4 Y  - f (U I(1 - f ’ ( V P J  I dy dx. 

Using the properties of the 6 function we find on one hand putting z = y -f( V) ,  

(A. 18) 

(A.18a) 
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ie the integral corresponding to (A.15), and on the other hand 

where we have again assumed that everything is well behaved in the range considered. 
Thus we find that the n-dimensional result is completely analogous to the one-dimen- 
sional equation (A.17). For reference we give the explicit formulae 

(A.19) 

(A.19a) 

We may also note the n-dimensional analogue of equation (A.16), which may be useful 
when the inverse (A.7) of the transformation (A.6) is not known explicitly 

(A.20) 
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